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Update prior model probabilities to posterior ones

[option: multi-model inference by bayesian model averaging]
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There are many, many ways in which this 
base cosmological model can be extended.
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Table 2. Candidate parameters: those which might be relevant for cosmological observations, but for which there is presently

no convincing evidence requiring them. They are listed so as to take the value zero in the base cosmological model. Those

above the line are parameters of the background homogeneous cosmology, and those below describe the perturbations. Of the

latter set, the first six refer to adiabatic perturbations, the next three to tensor perturbations, and the remainder to isocurvature

perturbations.

Ωk spatial curvature

Nν − 3.04 effective number of neutrino species (CMBFAST definition)

mνi
neutrino mass for species ‘i’
[or more complex neutrino properties]

mdm (warm) dark matter mass

w + 1 dark energy equation of state

dw/dz redshift dependence of w
[or more complex parametrization of dark energy evolution]

c2
S
− 1 effects of dark energy sound speed

1/rtop topological identification scale

[or more complex parametrization of non-trivial topology]

dα/dz redshift dependence of the fine structure constant

dG/dz redshift dependence of the gravitational constant

n − 1 scalar spectral index

dn/d lnk running of the scalar spectral index

kcut large-scale cut-off in the spectrum

Afeature amplitude of spectral feature (peak, dip or step) ...

kfeature ... and its scale

[or adiabatic power spectrum amplitude parametrized inN bins]

fNL quadratic contribution to primordial non-gaussianity

[or more complex parametrization of non-gaussianity]

r tensor-to-scalar ratio

r + 8nT violation of the inflationary consistency equation

dnT/d ln k running of the tensor spectral index

PS CDM isocurvature perturbation ...

nS ... and its spectral index ...

PSR ... and its correlation with adiabatic perturbations ...

nSR − nS ... and the spectral index of that correlation

[or more complicated multi-component isocurvature perturbation]

Gµ cosmic string component of perturbations

and radiation densities requiring to be specified as independent pa-

rameters. The base model includes a cosmological constant/dark

energy, whose density is fixed by the spatial flatness condition. To

complete the parameter set, we need the Hubble constant. Accord-

ingly, a minimal description of the Universe requires just five fun-

damental parameters.2 Further, the radiation density Ωr is directly

measured at high accuracy from the cosmic microwave background

temperature and is not normally varied in fits to other data.

In addition to these fundamental parameters, comparisons

with microwave anisotropy and galaxy power spectrum data require

knowledge of the reionization optical depth τ and the galaxy bias
parameter b respectively. These are not fundamental parameters, as
they are in principle computable from the above, but present under-

standing does not allow an accurate first-principles derivation and

instead typically they are taken as additional phenomenological pa-

rameters to be fit from the data.

Complementary to this base parameter set is what I will call

the list of candidate parameters. These are parameters which are not

convincingly measured with present data, but some of which might

be required by future data. Many of them are available in model

prediction codes such as CMBFAST (Seljak & Zaldarriaga 1996).

Cosmological observations seek to improve the measurement of the

2 To be more precise, this base model assumes all the parameters to be

listed in Table 2 are zero. Analyses may use different parameter definitions

equivalent to those given here, for instance using the physical densities Ωh2

in place of the density parameters.

base parameters, and also to investigate whether better data requires

the promotion of any parameters from the candidate set into the

standard cosmological model. Table 2 shows a list of parameters

which have already been discussed in the literature, and although

already rather long is likely to be incomplete.

The upper portion of Table 2 lists possible additional param-

eters associated with the background space-time, while the lower

part contains those specifying the initial perturbations. The base

cosmological model assumes these are all zero (as defined in the

table), and indeed it is a perfectly plausible cosmological model

that they are indeed all zero, with the sole exception of the neu-

trino masses, for which there is good non-cosmological evidence

that they are non-zero. One should be fairly optimistic about learn-

ing something about neutrino masses from cosmology, which is

why they are included as cosmological parameters. It is also pos-

sible that one day they might be pinned down accurately enough

by other measurements that cosmologists no longer need to worry

about varying them, and then neutrino masses will not be cosmo-

logical parameters any more than the electron or proton mass are.

It is of course highly unlikely that all the parameters on the

candidate list will be relevant (if they were, observational data

would have little chance of constraining anything), and on theo-

retical grounds some are thought much more likely than others. In

most cases parameters can be added individually to the base model,

but there are some dependences; for example, it doesn’t make much

sense to include spectral index running as a parameter unless the

spectral index itself is included. Quite a lot of the parameters in Ta-
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How do we compare different cosmological models (i.e. 
different choices of fundamental parameters)?
Can we say which model is best?

Problem 1: if we add extra parameters, typically the 
maximum likelihood will increase, even if the new 
parameter actually has no physical relevance.

We need a way of penalizing use of extra 
parameters - an implementation of Ockham’s razor.

Problem 2: as we add extra parameters, the uncertainties 
on existing parameters increase, and eventually we learn 
nothing useful about anything.
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Model Selection Statistics

 Akaike information criterion      (Akaike 1974)

 Bayesian information criterion   (Schwarz 1978)

 Bayesian evidence                     (Jeffreys 1961 etc)

The preferred model is the one which minimizes the 
information criterion, or maximizes the evidence.

N = number of datapointsBIC=−2lnLmax+ k lnN

k = number of parametersAIC=−2lnLmax+2k

Liddle, MNRAS, astro-ph/0401198
astro-ph/0701113

E =
Z
dθL(θ) pr(θ)  = parameter vector, pr = priorθ

NB: the ratio of evidences between two models is also known as the Bayes factor.
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The Bayesian evidence is the most powerful of these. It is a full 
implementation of Bayesian inference, and literally gives the probability 
of the data given the model (note, not the probability of particular 
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Model selection techniques are essential 
when considering whether or not new 

data requires the addition of new 
parameters to describe it.
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Statistical fluke: By definition important only if people 
do their error analysis wrongly.

Publication bias: Only positive results get published, 
enhancing their apparent statistical significance 
(recognised as a major problem in clinical trials).

Inappropriate “a posteriori” reasoning: choosing 
“interesting” features from the data and assessing their 
significance via Monte Carlo analyses.

Neglect of model dimensionality: using parameter 
estimation rather than model selection.

Something like 95% of all 95% confidence 
“detections” turn out to be wrong. Why?
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For guidance, people usually appeal to the Jeffreys’ scale.

Interpretational scale

The most useful divisions are 2.5 (odds 
ratio of 12:1) and 5 (odds ratio of 150:1).

Jeffreys’ Scale: Δ lnE < 1 Not worth more than a bare mention
1< Δ lnE < 2.5 Substantial evidence
2.5< Δ lnE < 5 Strong to very strong evidence

5< Δ lnE Decisive evidence
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Figure 12. Informative regions (shaded) where one of the com-
peting models has posterior odds larger than 10 (light shadowed
regions) or 100 (dark shaded region) against 1. The white re-
gion corresponds to a non-informative limbo. For this plot, we
took advantage of the Savage-Dickey ratio assuming a Gaussian
marginalized posterior for the parameter of interest and a Gaus-
sian, separable prior. The location of the three parameters ana-
lyzed in the text in the (I, λ) plane is shown by crosses.

simpler model (i.e., λ>∼ 4). Conversely, for λ<∼ 3 highly in-
formative data (I >∼ 2) do favor the conclusion that ω = ω0.
In general, a large information content favors the simpler
model, because Occam’s razor penalizes the large volume of
“wasted” parameter space of the extended model. A large λ
disfavors exponentially the simpler model, in agreement with
the sampling theory result. The location on the plane of the
three cases discussed in the text (the scalar spectral index,
the spatial curvature and the CDM isocurvature component)
is marked by crosses in Figure 12. In each case we plot the
most informative combination of data. Even though the in-
formative regions of Figure 12 assume perfect Gaussianity
for the posterior marginalized pdf, they are illustrative of
the results one might obtain in real cases, and can serve as
a rough guide for the Bayes factor determination.

5.2 Validity of approximations

We have seen that the Laplace approximation and the
Savage-Dickey formula can be used as handy tools for model
comparison, sidestepping the need of carrying out a numer-
ically demanding integration of the posterior over all pa-
rameter space. A completely satisfactory treatment would
require the development of methods to estimate at the same
time the error on the resulting Bayes factor. However, it
seems less of a priority to achieve a high numerical precision
in the Bayes factor, in view of the fact that model compari-
son results can strongly depend on the parameter space one
assumes – as shown by the example of the isocurvature frac-
tion. Therefore, fast methods to compute the Bayes factor,

such as the Savage-Dickey formula or the Laplace approxi-
mation, are very handy for exploring the consequences of a
change of basis and the corresponding change of prior. Here
we concisely comment on the validity of the approximations
involved, keeping in mind that all we need is a precision less
than unity in the log of the Bayes factor.

The Laplace approximation to the posterior volume,
Eq. (22), fails in the case of heavily non-Gaussian distri-
butions. To a certain extent, this pathology can be cured
by going over to a set of “normal parameters”, in which the
posterior pdf is close to Gaussian and the parameters’ direc-
tions uncorrelated. Usually, this new set of parameters has a
physical interpretation in terms of the quantities probed by
the observation. The advantage of the Laplace approxima-
tion is that it can be applied to compare two disconnected
models, which could have in principle two totally different
sets of parameters.

The Savage-Dickey density ratio, Eq. (35), is an exact
expression for separable priors, which does not assume any-
thing about the normality of the distribution and is com-
pletely equivalent to thermodynamic integration. The ac-
curacy of the resulting Bayes factor depends only on the
normalization of the marginalized pdf, whose precision is
limited by the Monte Carlo sampling of parameter space.
Several tests are available to check for good coverage and
mixing of the Monte Carlo chains, and in particular one can
run the Monte Carlo at an higher temperature to ensure that
the tails of the distribution are appropriately sampled. It is
important to keep in mind that the Savage-Dickey formula
is restricted to the comparison of nested models.

As already mentioned, the ExPO technique assumes
Gaussianity of the pdf at two levels, and therefore its va-
lidity is limited by the same arguments given above for the
Laplace approximation. Further study is needed to improve
on this assumption, and to apply the ExPO in the context
of Bayesian experiment design.

5.3 About the prior and how to set it

Contrary to the case of inference problems, the prior avail-
able range is the key quantity for model comparison. The
underpinnings of the prior choice can be found in our un-
derstanding of model-specific issues. In this work we have
offered two simple examples of priors stemming from the-
oretical motivations: the prior on the scalar spectral index
is a consequence of assuming slow-roll inflation while the
prior on the spatial curvature comes from our knowledge
that the Universe is not empty (and therefore the curvature
must be smaller than −1) nor overclosed (or it would have
recollapsed). This simple observations set the correct scale
for the prior on Ωκ, which is of order unity. In general, it
is enough to have an order of magnitude estimate of the a

priori allowed range for the parameter of interest. In view
of the fact that it is the logarithm of the evidence that mat-
ters, it is unimportant to refine further the prior, once we
are confident that its order of magnitude is meaningful in
the context of the model considered.

The situation is different for essentially scale-free pa-
rameters, such as the adiabatic and isocurvature amplitudes
of our third application (see however Lazarides et al. (2004)
for a case where model-theoretical considerations set the
prior for the primordial curvaton amplitude). In the absence

c© 0000 RAS, MNRAS 000, 000–000
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E =
Z

L(θ)pr(θ)dθ=
Z 1

0
L(X)dX

Skilling (2004) rewrote the evidence as

where X is the fractional prior mass.

This can then be evaluated using Monte 
Carlo samples to trace the variation of 
likelihood with prior mass, peeling away 
thin nested isosurfaces of equal likelihood.

http://www.cosmonest.org
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Datasets Model ln E

WMAP only
HZ

varying n
0.0

0.34 ± 0.26

WMAP+all

HZ
varying n

n and r (uniform on r)
n and r (log on r)

0.0
1.99 ± 0.26
-1.45 ± 0.45
1.90 ± 0.24

1.  WMAP alone cannot distinguish between HZ and a varying 
spectral index.

2.  Adding other datasets starts to prefer varying n, but 
only at odds of about 8:1.

3. However inflation predicts we should include both n and r, 
which is actually disfavoured as compared to HZ...

4. ... unless you use a logarithmic prior for r, which puts you back 
close to the r=0 case.
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Model selection for survey comparison/design

As well as applying to present data, a powerful tool is 
forecasts of the model selection capabilities of upcoming 
experiments, eg dark energy surveys. 

Fisher matrix approach:                                                        
simulate data for a fiducial model (eg LambdaCDM);   
estimate expected parameter uncertainties about that model; 
interpret that if the true model is outside the contours, 
LambdaCDM is excluded.

Bayes factor approach:                                                         
simulate data at each point in parameter plane;                   
compute Bayes factor (ie evidence ratio) of full model versus 
eg LambdaCDM at each point.
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however not that simulated.

The criterion for ruling out LambdaCDM is exactly the same as 
that used to rule out any other value in the plane, e.g. w=-0.99. 
Special status of LambdaCDM is not recognised.

Fisher matrix approach often assumes a gaussian likelihood.
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TABLE I: The mean ∆ ln E relative to the ΛCDM model together with its uncertainty, the information content H , the minimum
χ2, and the parameter constraints, for each of the models considered and for each of two data combinations. Uncertainties
on H0 are statistical only, and do not include systematic uncertainties. The models differ by virtue of the number of free
parameters, here in the dark energy sector, and/or the priors on those parameters. For reference, lnE for the ΛCDM model
was found to be −20.1 ± 0.1 for the compilation with Riess04 and −52.3 ± 0.1 for that with Astier05.

data used Model

WMAP+SDSS+ ∆ ln E H χ2
min parameter constraints

Model I: Λ

Riess04 0.0 5.7 30.5 Ωm = 0.26 ± 0.03, H0 = 65.5 ± 1.0

Astier05 0.0 6.5 94.5 Ωm = 0.25 ± 0.03, H0 = 70.3 ± 1.0

Model II: constant w, flat prior −1 ≤ w ≤ −0.33

Riess04 −0.1 ± 0.1 6.4 28.6 Ωm = 0.27 ± 0.04, H0 = 64.0 ± 1.4, w < −0.81,−0.70a

Astier05 −1.3 ± 0.1 8.0 93.3 Ωm = 0.24 ± 0.03, H0 = 69.8 ± 1.0, w < −0.90,−0.83a

Model III: constant w, flat prior −2 ≤ w ≤ −0.33

Riess04 −1.0 ± 0.1 7.3 28.6 Ωm = 0.27 ± 0.04, H0 = 64.0 ± 1.5, w = −0.87 ± 0.1

Astier05 −1.8 ± 0.1 8.2 93.3 Ωm = 0.25 ± 0.03, H0 = 70.0 ± 1.0, w = −0.96 ± 0.08

Model IV: w0–wa, flat prior −2 ≤ w0 ≤ −0.33, −1.33 ≤ wa ≤ 1.33

Riess04 −1.1 ± 0.1 7.2 28.5 Ωm = 0.27 ± 0.04, H0 = 64.1 ± 1.5, w0 = −0.83 ± 0.20, wa = −−b

Astier05 −2.0 ± 0.1 8.2 93.3 Ωm = 0.25 ± 0.03, H0 = 70.0 ± 1.0, w0 = −0.97 ± 0.18, wa = −−b

Model V: w0–wa, −1 ≤ w(a) ≤ 1 for 0 ≤ z ≤ 2

Riess04 −2.4 ± 0.1 9.1 28.5 Ωm = 0.28 ± 0.04, H0 = 63.6 ± 1.3, w0 < −0.78,−0.60a, wa = −0.07 ± 0.34

Astier05 −4.1 ± 0.1 11.1 93.3 Ωm = 0.24 ± 0.03, H0 = 69.5 ± 1.0, w0 < −0.90,−0.80a, wa = 0.12 ± 0.22

bWhere constraints on w are shown as upper limits only, the values
are 68% and 95% marginalized confidence limits.
cwa is unconstrained in Model IV.

because the intrinsic dispersion in SN Ia peak brightness
should be derived from the distribution of nearby SNe
Ia, or SNe Ia from the same small redshift interval if the
distribution in the peak brightness evolves with cosmic
time. This distribution is not well known at present, but
will become better known as more SNe Ia are observed by
the nearby SN Ia factory [30]. By using the larger intrin-
sic dispersion, we allow some reasonable margin for the
uncertainties in the SN Ia peak brightness distribution.

IV. RESULTS

We calculate the Bayesian evidence as our primary
model selection statistic. We also calculate the informa-
tion content H of the datasets, the best-fit χ2 values, and
the posterior parameter distributions within each model.
Our main focus is on the evidence and the parameter dis-
tributions. All of these quantities are by-products of run-
ning CosmoNest to evaluate the evidence of a model [17].

A. Bayesian evidence E

The interpretational scale introduced by Jeffreys [31]
defines a difference in lnE of greater than 1 as significant,

greater than 2.5 as strong, and greater than 5 as decisive,
evidence in favour of the model with greater evidence.

Our results are summarized in Table I. The priors on
the equation of state parameters were given earlier and
are indicated in the table. Priors on the additional pa-
rameters are 0.1 ≤ Ωm ≤ 0.5 and 40 ≤ H0 ≤ 90. For each
model and data compilation we tabulate ∆ lnE, which
is the difference between the mean ln E of the ΛCDM
model and the model concerned, plus the error on that
difference, obtained from 8 estimates of the evidence of
each model. Thus the ΛCDM entry is zero by definition.

We find that the WMAP+SDSS(BAO)+Astier05 data
combination distinguishes amongst the models more
strongly than does WMAP+SDSS(BAO)+Riess04 data,
while showing the same general trends. Subsequently,
our discussion uses Astier05 throughout.

Overall, the ΛCDM model (Model I) is a simple model
that continues to give a good fit to the data. It is there-
fore rewarded for its predictiveness with the largest evi-
dence, and remains the favoured model as found with an
earlier dataset (of SNe alone) by Saini et al. [9]. The other
models all show smaller evidences, though none are yet
decisively ruled out. Nevertheless, there is distinct evi-
dence against the two-parameter models, especially from
the compilation including Astier05. Model V has a wider
parameter range than Model IV and fares the worst, re-
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Ia, or SNe Ia from the same small redshift interval if the
distribution in the peak brightness evolves with cosmic
time. This distribution is not well known at present, but
will become better known as more SNe Ia are observed by
the nearby SN Ia factory [30]. By using the larger intrin-
sic dispersion, we allow some reasonable margin for the
uncertainties in the SN Ia peak brightness distribution.

IV. RESULTS

We calculate the Bayesian evidence as our primary
model selection statistic. We also calculate the informa-
tion content H of the datasets, the best-fit χ2 values, and
the posterior parameter distributions within each model.
Our main focus is on the evidence and the parameter dis-
tributions. All of these quantities are by-products of run-
ning CosmoNest to evaluate the evidence of a model [17].

A. Bayesian evidence E

The interpretational scale introduced by Jeffreys [31]
defines a difference in lnE of greater than 1 as significant,

greater than 2.5 as strong, and greater than 5 as decisive,
evidence in favour of the model with greater evidence.

Our results are summarized in Table I. The priors on
the equation of state parameters were given earlier and
are indicated in the table. Priors on the additional pa-
rameters are 0.1 ≤ Ωm ≤ 0.5 and 40 ≤ H0 ≤ 90. For each
model and data compilation we tabulate ∆ lnE, which
is the difference between the mean ln E of the ΛCDM
model and the model concerned, plus the error on that
difference, obtained from 8 estimates of the evidence of
each model. Thus the ΛCDM entry is zero by definition.

We find that the WMAP+SDSS(BAO)+Astier05 data
combination distinguishes amongst the models more
strongly than does WMAP+SDSS(BAO)+Riess04 data,
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Overall, the ΛCDM model (Model I) is a simple model
that continues to give a good fit to the data. It is there-
fore rewarded for its predictiveness with the largest evi-
dence, and remains the favoured model as found with an
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Riess04 −2.4 ± 0.1 9.1 28.5 Ωm = 0.28 ± 0.04, H0 = 63.6 ± 1.3, w0 < −0.78,−0.60a, wa = −0.07 ± 0.34

Astier05 −4.1 ± 0.1 11.1 93.3 Ωm = 0.24 ± 0.03, H0 = 69.5 ± 1.0, w0 < −0.90,−0.80a, wa = 0.12 ± 0.22

bWhere constraints on w are shown as upper limits only, the values
are 68% and 95% marginalized confidence limits.
cwa is unconstrained in Model IV.

because the intrinsic dispersion in SN Ia peak brightness
should be derived from the distribution of nearby SNe
Ia, or SNe Ia from the same small redshift interval if the
distribution in the peak brightness evolves with cosmic
time. This distribution is not well known at present, but
will become better known as more SNe Ia are observed by
the nearby SN Ia factory [30]. By using the larger intrin-
sic dispersion, we allow some reasonable margin for the
uncertainties in the SN Ia peak brightness distribution.

IV. RESULTS

We calculate the Bayesian evidence as our primary
model selection statistic. We also calculate the informa-
tion content H of the datasets, the best-fit χ2 values, and
the posterior parameter distributions within each model.
Our main focus is on the evidence and the parameter dis-
tributions. All of these quantities are by-products of run-
ning CosmoNest to evaluate the evidence of a model [17].

A. Bayesian evidence E

The interpretational scale introduced by Jeffreys [31]
defines a difference in lnE of greater than 1 as significant,

greater than 2.5 as strong, and greater than 5 as decisive,
evidence in favour of the model with greater evidence.

Our results are summarized in Table I. The priors on
the equation of state parameters were given earlier and
are indicated in the table. Priors on the additional pa-
rameters are 0.1 ≤ Ωm ≤ 0.5 and 40 ≤ H0 ≤ 90. For each
model and data compilation we tabulate ∆ lnE, which
is the difference between the mean ln E of the ΛCDM
model and the model concerned, plus the error on that
difference, obtained from 8 estimates of the evidence of
each model. Thus the ΛCDM entry is zero by definition.

We find that the WMAP+SDSS(BAO)+Astier05 data
combination distinguishes amongst the models more
strongly than does WMAP+SDSS(BAO)+Riess04 data,
while showing the same general trends. Subsequently,
our discussion uses Astier05 throughout.

Overall, the ΛCDM model (Model I) is a simple model
that continues to give a good fit to the data. It is there-
fore rewarded for its predictiveness with the largest evi-
dence, and remains the favoured model as found with an
earlier dataset (of SNe alone) by Saini et al. [9]. The other
models all show smaller evidences, though none are yet
decisively ruled out. Nevertheless, there is distinct evi-
dence against the two-parameter models, especially from
the compilation including Astier05. Model V has a wider
parameter range than Model IV and fares the worst, re-
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Conclusion: LambdaCDM currently favoured but all models still alive
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If LambdaCDM is right, are upcoming 
experiments (eg DES, WFMOS, SNAP) 
good enough to favour it decisively?

What is the probability that upcoming 
experiments will robustly detect dark 
energy evolution?

If future experiments are still inconclusive, 
how tight will be the limits they can 
impose on dark energy properties?

Under particular prior assumptions we made (the effect of 
whose variation is readily tested), the answers are ...

About 25%

YES

Tighter than 
you expect!
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The Bayesian evidence is the most powerful available tool. It is challenging 
to compute but nested sampling makes it feasible.

An application to adiabatic models shows current data are comparably 
well explained by the Harrison-Zel’dovich model and a varying spectral 
index model, with slight preference for the latter. 

Model selection forecasting is a powerful new tool for experimental design 
and comparison, and is readily applied to dark energy experiments.

Conclusions




